User Interaction Based Community Detection in Online Social Networks
نویسندگان
چکیده
Phase 4: Hierarchical Clustering on Probability Graph Similarity measure: puv values from 3 rd phase Linkage Criterion: UPGMA Phase 3: Computing the Probabilities Given an interaction graph, GI(V, E, W), and a group interaction graph, GGI(V, Eˊ, Wˊ), we construct a probability graph GP(V, EUEˊ, P), where each weight puv ε P represents probability between vertices u and v to belong in the same community.
منابع مشابه
Utilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملExploiting Emotions in Social Interactions to Detect Online Social Communities
The rapid development of Web 2.0 allows people to be involved in online interactions more easily than before and facilitates the formation of virtual communities. Online communities exert influence on their members’ online and offline behaviors. Therefore, they are of increasing interest to researchers and business managers. Most virtual community studies consider subjects in the same Web appli...
متن کاملUser Interaction Based Community Detection in Online Social Networks
Online social networks (OSNs) provide an excellent platform to connect, share, communicate, and interact among different groups of people. Discovering meaningful communities based on the interactions of different people in a social network is an active research topic in recent years. However, existing interaction based community detection techniques either rely on the content analysis or only c...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014